References

[Asc89]

Uri Ascher. On symmetric schemes and differential-algebraic equations. SIAM Journal on Scientific and Statistical Computing, 10(5):937–949, 1989. doi:10.1137/0910054.

[EH76]

W.H. Enright and T.E. Hull. Comparing numerical methods for the solution of stiff systems of ODEs arising in chemistry. In L. LAPIDUS and W.E. SCHIESSER, editors, Numerical Methods for Differential Systems, pages 45–66. Academic Press, 1976. doi:10.1016/B978-0-12-436640-4.50008-3.

[FN74]

Richard J. Field and Richard M. Noyes. Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction. The Journal of Chemical Physics, 60(5):1877–1884, 1974. doi:10.1063/1.1681288.

[GW82]

Björn A. Gottwald and Gerhard Wanner. Comparison of numerical methods for stiff differential equations in biology and chemistry. SIMULATION, 38(2):61–66, 1982. doi:10.1177/003754978203800206.

[HNW93]

E. Hairer, S.P. Norsett, and G. Wanner. Solving ordinary differential equations I: Nonstiff problems. Number 8 in Springer Series in Computational Mathematics. Springer-Verlag Berlin Heidelberg, 1993. doi:10.1007/978-3-540-78862-1.

[HW96]

E. Hairer and G. Wanner. Solving ordinary differential equations II: Stiff and differential-algebraic problems. Number 14 in Springer Series in Computational Mathematics. Springer-Verlag Berlin Heidelberg, 2 edition, 1996. doi:10.1007/978-3-642-05221-7.

[JM17]

Z. Jackiewicz and H. Mittelmann. Construction of IMEX DIMSIMs of high order and stage order. Applied Numerical Mathematics, 121:234–248, 2017. doi:10.1016/j.apnum.2017.07.004.

[LN71]

R. Lefever and G. Nicolis. Chemical instabilities and sustained oscillations. Journal of Theoretical Biology, 30(2):267–284, 1971. doi:10.1016/0022-5193(71)90054-3.

[Lor63]

Edward N Lorenz. Deterministic nonperiodic flow. Journal of atmospheric sciences, 20(2):130–141, 1963. doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

[Lor96]

Edward N Lorenz. Predictability: a problem partly solved. In Proc. Seminar on predictability, volume 1. Reading, 1996. doi:10.1017/CBO9780511617652.004.

[Pet86]

L. R. Petzold. Order results for implicit runge-kutta methods applied to differential/ algebraic systems. SIAM Journal on Numerical Analysis, 23(4):837–852, 1986. URL: https://www.jstor.org/stable/2157625.

[PS19]

Andrey A Popov and Adrian Sandu. A bayesian approach to multivariate adaptive localization in ensemble-based data assimilation with time-dependent extensions. Nonlinear Processes in Geophysics, 26(2):109–122, 2019. doi:10.5194/npg-26-109-2019.

[PR74]

A Prothero and A Robinson. On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations. Mathematics of Computation, 28(125):145–162, 1974. doi:10.2307/2005822.

[Rob66]

H.H. Robertson. The solution of a set of reaction rate equations. Walsh, J., Ed., Numerical Analysis, An introduction, 178182:178–182, 1966.

[SLH70]

J. H. Seinfeld, Leon Lapidus, and Myungkyu Hwang. Review of numerical integration techniques for stiff ordinary differential equations. Industrial & Engineering Chemistry Fundamentals, 9(2):266–275, 1970. doi:10.1021/i160034a013.

[Str18]

Steven H Strogatz. Nonlinear Dynamics and Chaos: With applications to physics, biology, chemistry, and engineering. CRC press, second edition, 2018. ISBN 0813349109. doi:10.1201/9780429492563.